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D. Strange Queries
Editorial

The problem is stated very simple. You are given an array A[1, . . . , N ] of N integers. You have to answer Q queries
about the array. The answer for the ith query is the number of pairs of indices (i, j), such that L1 ≤ i ≤ R1,
L2 ≤ j ≤ R2 and Ai = Aj .

First, as often in problems with range queries, we will simplify a result of a single query(L1, R1, L2, R2) to the result
of query(1, R1, 1, R2) - query(1, R1, 1, L2 − 1) - query(1, R2, L1 − 1) + query(1, L1 − 1, 1, L2 − 1). We can do this,
because a result for a single query is just the number of indices.

Since, N ≤ 105, obviously we cannot use the a O(N2) method. However, N is small enough to use the method called
square root decomposition of queries.

The first step in our solution, is to precompute the answer for some queries. Let’s call K a block size. Then let pi,j
be the answer for a query with the right endpoint of the first range at index i ·K, where 1 ≤ i ·K ≤ N , and the
right endpoint of the second range at any index 1 ≤ j ≤ N . Notice that we can easily precompute the whole p table
in O(N ·K) time. This is true, because there are total of N ·K entries in p, and the value of pi,j can be computed
from pi,j−1 in constant time by using counters of values implemented as an array. This is possible since all integers
in A are within a range [1, N ].

So far so good, we can answer queries where one right endpoint is arbitrary and the second one is a multiple of K.
How can we use these precomputed values to answer each query fast enough? We can decouple a single query into a
few queries for which we have precomputed answers, and one query which is so small that we can answer it quickly.

In more details, let’s consider a single query(1, c1 · K + r1, 1, c2 · K + r2). We can notice, that the result for this
query can be computed as query(1, c1 ·K + r1, 1, c2 ·K) + query(1, c1 ·K, 1, c2 ·K + r2) - query(1, c1 ·K, 1, c2 ·K) +
query(c1 ·K, c1 ·K + r1, c2 ·K, c2, ·K + r2). Each of the first 3 of these queries has at least one right endpoint equal
to a multiple of K, so its value is precomputed in p table. Both two ranges in the fourth query are not greater than
K, so we can compute the answer it in O(K) time by simply counting elements occurring in both ranges.

Based on the above observations, we can notice that answering a single query takes O(K) time, so the total complexity
of this solution is O(N ·K + Q ·K), and we can minimize it if we let K =

√
N . That is why this kind of approach

is called a square root decomposition.


