
ACM ICPC Practice Contest, 8th November, 2015

K. The World of Trains
Editorial

In this problem, given N,L, T and K, your task is to count the number of arrays of size N , with integer values in
a range [1,K], containing exactly T consecutive subarrays of length L with equal elements. From now, we assume
that any array described below is an array with integer values in a range [1,K]. Moreover, we call a consecutive
subarray good, if it has length L and all elements equal.

The problem can be defined as a dynamic programming problem. However, the crucial thing here is to capture only
required variables in a dynamic programming state. For example, perhaps the most straightforward, but a naive and
slow, is use the following method. Let gi,t,k,l be the number of arrays of length i, containing exactly t good subarrays,
with the suffix of value k occurring l times. Having g defined, we can easily compute its value for any state base on
the previously computed values. However, since L and K are quite large here, we cannot use this method. It would
be perfect if we only can avoid capturing the last two variables of g in a dynamic programming state.

Based on the above observation, we can use the following idea: we are going to extend any array of size i containing
exactly t good subarrays, by appending a consecutive block of same values at its end. We do this, assuring that
the appended value is different that the value of the last element in an array we extend, without capturing this
information in a dynamic programming state.

In more details, let fi,t be the number of arrays of length i, containing exactly t good subarrays. If we are only
able to compute fi,t efficiently using dynamic programming, fN,T will be the final result, and the problem is solved.
Based on the above idea, we can define dynamic programming transitions as follows:

fi,0 =

Ki if i < L

(K − 1) ·
L−1∑
j=1

fi−j,0 if i ≥ L

fi,t = (K − 1) ·
(L−1∑

j=1

fi−j,t

)
+ (K − 1) ·

(min(t,i−L+1)∑
j=1

fi−L+1−j,t−j

)
for t > 0

When t = 0, so there are no good subarrays, we have two cases, In the first case, when i < L, each possible subarray
is valid, because there is no way to form any good subarray. In the second case, we can append K−1 different blocks
of size j = 1, 2, . . . , L − 1 consisting of one value different that the last element of any array taken into account to
fi−j,0. By doing this, we do not create any new good subarray, and moreover, we count take into account every valid
subarray here.

On the other hand, when t > 0, we can either extend any valid array not shorter than i−L+1, with t good subarrays,
kepping the number of good subarrays the same, by applying the method used in the first case, or we can create
exactly j = 1, 2, . . . ,min(t, i−L + 1) new good subarrays at the end of a resulting array of length i, by appending a
block of L + j − 1 same elements at the end.

Notice that, we can update our dynamic programming state as long as sums used in the above equations in order to
avoid computing them from the scratch for each entry we compute. Thus, the total time complexity of this method
is O(N · T).

