
Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem A. Guarding warehouses
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Bob Bubblestrong just got a new job as security guard. Bob is now responsible for safety of a collection
of warehouses, each containing the most valuable Bubble Cup assets - the high-quality bubbles. His task
is to detect thieves inside the warehouses and call the police.

Looking from the sky, each warehouse has a shape of a convex polygon. Walls of no two warehouses
intersect, and of course, none of the warehouses is built inside of another warehouse.

Little did the Bubble Cup bosses know how lazy Bob is and that he enjoys watching soap operas (he
heard they are full of bubbles) from the coziness of his office. Instead of going from one warehouse to
another to check if warehouses are secured, the plan Bob has is to monitor all the warehouses from the
comfort of his office using the special X-ray goggles. The goggles have an infinite range, so a thief in any
of the warehouses could easily be spotted.

However, the goggles promptly broke and the X-rays are now strong only enough to let Bob see through
a single wall. Now, Bob would really appreciate if you could help him find out what is the total area
inside of the warehouses monitored by the broken goggles, so that he could know how much area of the
warehouses he needs to monitor in person.

Input
The first line contains one integer N (1 ≤ N ≤ 104) – the number of warehouses.

The next N lines describe the warehouses.

The first number of the line is integer ci (3 ≤ ci ≤ 104) – the number corners in the ith warehouse, followed
by ci pairs of integers. The jth pair is (xj , yj) – the coordinates of the jth corner (|xj |, |yj | ≤ 3 ∗ 104).
The corners are listed in the clockwise order. The total number of corners in all the warehouses is at most
5 ∗ 104.
Bob’s office is positioned at the point with coordinates (0, 0). The office is not contained within any of
the warehouses.

Output
Print a single line containing a single decimal number accurate to at least four decimal places – the total
area of the warehouses Bob can monitor using the broken X-ray goggles.

Example
standard input standard output

5
4 1 1 1 3 3 3 3 1
4 4 3 6 2 6 0 4 0
6 -5 3 -4 4 -3 4 -2 3 -3 2 -4 2
3 0 -1 1 -3 -1 -3
4 1 -4 1 -6 -1 -6 -1 -4

13.333333333333

Note

Page 1 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Areas monitored by the X-ray goggles are colored green and areas not monitored by the goggles are colored
red.

The warehouses ABCD, IJK and LMNOPQ are completely monitored using the googles.

The warehouse EFGH is partially monitored using the goggles: part EFW is not monitored because to
monitor each point inside it, the X-rays must go through two walls of warehouse ABCD.

The warehouse RUTS is not monitored from the Bob’s office, because there are two walls of the warehouse
IJK between Bob’s office and each point in RUTS.

The total area monitored by the goggles is P = PABCD + PFGHW + PIJK + PLMNOPQ = 4 +
3.333333333333 + 2 + 4 = 13.333333333333.

Page 2 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem B. Jumping Transformers
Input file: standard input
Output file: standard output
Time limit: 4 seconds
Memory limit: 128 megabytes

You, the mighty Blackout, are standing in the upper-left (0, 0) corner of NxM matrix. You must move
either right or down each second.

There are K transformers jumping around the matrix in the following way. Each transformer starts
jumping from position (x, y), at time t, and jumps to the next position each second. The x-axes
grows downwards, and y-axes grows to the right. The order of jumping positions is defined as
(x, y), (x+ d, y − d), (x+ d, y), (x, y + d), and is periodic. Before time t transformer is not in the matrix.

You want to arrive to the bottom-right corner (N − 1,M − 1), while slaying transformers and losing the
least possible amount of energy. When you meet the transformer (or more of them) in the matrix field,
you must kill them all, and you lose the sum of the energy amounts required to kill each transformer.

After the transformer is killed, he of course stops jumping, falls into the abyss and leaves the matrix
world. Output minimum possible amount of energy wasted.

Input
In the first line, integers N ,M (1 ≤ N,M ≤ 500), representing size of the matrix, and K (0 ≤ K ≤ 5∗105)
, the number of jumping transformers.

In next K lines, for each transformer, numbers x, y, d (d ≥ 1), t (0 ≤ t ≤ N+M−2), and e (0 ≤ e ≤ 109),
representing starting coordinates of transformer, jumping positions distance in pattern described above,
time when transformer starts jumping, and energy required to kill it.

It is guaranteed that all 4 of jumping points of the transformers are within matrix coordinates

Output
Print single integer, the minimum possible amount of energy wasted, for Blackout to arrive at bottom-right
corner.

Example
standard input standard output

3 3 5
0 1 1 0 7
1 1 1 0 10
1 1 1 1 2
1 1 1 2 2
0 1 1 2 3

9

Note
If Blackout takes the path from (0, 0) to (2, 0), and then from (2, 0) to (2, 2) he will need to kill the first
and third transformer for a total energy cost of 9. There exists no path with less energy value.

Page 3 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem C. BubbleReactor
Input file: standard input
Output file: standard output
Time limit: 1.5 seconds
Memory limit: 256 megabytes

You are in charge of the BubbleReactor. It consists of N BubbleCores connected with N lines of electrical
wiring. Each electrical wiring connects two distinct BubbleCores. There are no BubbleCores connected
with more than one line of electrical wiring.

Your task is to start the BubbleReactor by starting each BubbleCore. In order for a BubbleCore to be
started it needs to be receiving power from a directly connected BubbleCore which is already started.
However, you can kick-start one BubbleCore manually without needing power. It is guaranteed that all
BubbleCores can be started.

Before the BubbleCore boot up procedure its potential is calculated as the number of BubbleCores it can
power on (the number of inactive BubbleCores which are connected to it directly or with any number of
inactive BubbleCores in between, itself included)

Start the BubbleReactor so that the sum of all BubbleCores’ potentials is maximum.

Input
First line contains one integer N(3 ≤ N ≤ 15.000), the number of BubbleCores.

The following N lines contain two integers U, V (0 ≤ U 6= V < N) denoting that there exists electrical
wiring between BubbleCores U and V .

Output
Single integer, the maximum sum of all BubbleCores’ potentials.

Example
standard input standard output

10
0 1
0 3
0 4
0 9
1 2
2 3
2 7
4 5
4 6
7 8

51

Note
If we start by kickstarting BubbleCup 8 and then turning on cores 7, 2, 1, 3, 0, 9, 4, 5, 6 in that order we
get potentials 10 + 9 + 8 + 7 + 6 + 5 + 1 + 3 + 1 + 1 = 51

Page 4 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem D. The Light Square
Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 256 megabytes

For her birthday Alice received an interesting gift from her friends – The Light Square. The Light Square
game is played on an N ×N lightbulbs square board with a magical lightbulb bar of size N × 1 that has
magical properties. At the start of the game some lights on the square board and magical bar are turned
on. The goal of the game is to transform the starting light square board pattern into some other pattern
using the magical bar without rotating the square board. The magical bar works as follows:

It can be placed on any row or column

The orientation of the magical lightbulb must be left to right or top to bottom for it to keep its magical
properties

The entire bar needs to be fully placed on a board

The lights of the magical bar never change

If the light on the magical bar is the same as the light of the square it is placed on it will switch the light
on the square board off, otherwise it will switch the light on

The magical bar can be used an infinite number of times

Alice has a hard time transforming her square board into the pattern Bob gave her. Can you help her
transform the board or let her know it is impossible? If there are multiple solutions print any.

Input
The first line contains one positive integer number N (1 ≤ N ≤ 2000) representing the size of the square
board.

The next N lines are strings of length N consisting of 1’s and 0’s representing the initial state of the
square board starting from the top row. If the character in a string is 1 it means the light is turned on,
otherwise it is off.

The next N lines are strings of length N consisting of 1’s and 0’s representing the desired state of the
square board starting from the top row that was given to Alice by Bob.

The last line is one string of length N consisting of 1’s and 0’s representing the pattern of the magical
bar in a left to right order.

Output
Transform the instructions for Alice in order to transform the square board into the pattern Bob gave
her. The first line of the output contains an integer number M (0 ≤ M ≤ 105) representing the number
of times Alice will need to apply the magical bar.

The next M lines are of the form “col X” or “row X”, where X is 0-based index of the matrix, meaning
the magical bar should be applied to either row X or column X.

If there is no solution, print only -1. In case of multiple solutions print any correct one.

Page 5 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Examples
standard input standard output

2
11
11
00
01
11

-1

2
10
00
00
00
10

1
row 0

3
110
011
100
100
011
100
100

3
row 0
col 0
col 1

Note
Example 1: It is impossible to transform square board from one format to another

Example 2: Magic bar can be applied on first row or column.

Page 6 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem E. Harvester
Input file: standard input
Output file: standard output
Time limit: 0.5 seconds
Memory limit: 256 megabytes

It is Bubble Cup finals season and farmer Johnny Bubbles must harvest his bubbles. The bubbles are in a
rectangular bubblefield formed of N x M square parcels divided into N rows and M columns. The parcel
in ith row and jth column yields Ai,j bubbles.

Johnny Bubbles has available a very special self-driving bubble harvester that, once manually positioned
at the beginning of a row or column, automatically harvests all the bubbles in that row or column. Once
the harvester reaches the end of the row or column it stops and must be repositioned. The harvester can
pass through any parcel any number of times, but it can collect bubbles from the parcel only once.

Johnny is very busy farmer, so he is available to manually position the harvester at most four times per
day. Johnny is also impatient, so he wants to harvest as many bubbles as possible on the first day.

Please help Johnny to calculate what is the maximum number of bubbles he can collect on the first day.

Input
The first line contains two integers N and M (1 ≤ N , M ≤ N * M ≤ 105) - the bubblefield size.

Each of the next N lines contains M integers. The jth element in the ith line is Ai,j (0 ≤ ai,j ≤ 109) —
the yield of the parcel located in the ith row and the jth column.

Output
Output contains one integer number - maximum number of the bubbles Johnny can harvest on the first
day.

Examples
standard input standard output

2 2
1 2
3 4

10

5 5
0 9 2 7 0
9 0 3 0 5
0 8 0 3 1
6 7 4 3 9
3 6 4 1 0

80

Note
In the first example, farmer Johnny can harvest all the bubbles by positioning the harvester on the first
and the second row.

In the second example, one way Johnny can harvest maximum number of bubbles is to position the
harvester in the second row, the fourth row, the second column and the fourth column.

Page 7 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem F. Xor Spanning Tree
Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 128 megabytes

In the galaxy far far away is the ancient interplanetary republic of Bubbleland, consisting of N planets.
Between them, there are M bidirectional wormholes, each connecting a pair of planets. Bubbleland is
a very centralized republic, having a capital planet Whiteplanet, from which any another planet can be
reached using these wormholes. It is also guaranteed that no wormhole connects planet to itself and that
no two different wormholes connect same pair of planets.

We call a path that begins at one planet, visits other planets and each of them at most once and returns
to starting point a tour. Interplanetary Safety Regulations guarantee that each planet belongs to at most
one tour and that there are at most 42 tours.

After many eons of usage, wormholes need to be repaired and each wormhole has the cost Wi which needs
to be payed for reparation. Unfortunately, the Senate of Bubbleland is short on budget. Therefore, they
have decided only to fix as many wormholes as they need in order to have all planets reachable from capital
and to pay as little money as they have to for this repair. However the way in which the Senate calculates
the cost is different. Cost of the set of reparations is binary xor of costs of each individual reparation,
that is if reparations to be made have costs A1, A2, ..., Ak, the cost of entire set is A1 ⊕A2 ⊕ ...⊕Ak.

Now the Senate would like to know how much money do they have to pay and also the number of different
ways to achieve that cost modulo 1000000007.

Input
First line of input contains two numbers N(1 ≤ N ≤ 100.000), the number of planets and
M(1 ≤ M ≤ 100.041), the number of wormholes. Following M lines contain three numbers
U, V (1 ≤ U 6= V ≤ N) and W (1 ≤ W ≤ 100.000), meaning that there exists a wormhole connecting
planets U and V , with repair cost of W .

Output
Output two numbers, the smallest possible cost of entire reparation and the number of different valid
reparations with that cost modulo 1000000007.

Example
standard input standard output

6 6
4 1 5
5 2 1
6 3 2
1 2 6
1 3 3
2 3 4

1 1

Note
We can repair wormholes 1,2,3,5 and 6, paying 5⊕1⊕2⊕3⊕4 = 1, one can check that this is the cheapest
repair in which all of the planets are connected and the only valid repair with that cost.

Page 8 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem G. Periodic integer number
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Alice became interested in periods of integer numbers. We say positive X integer number is periodic with
length L if there exists positive integer number P with L digits such that X can be written as PPPP. . . P .
For example:

X = 123123123 is periodic number with length L = 3 and L = 9

X = 42424242 is periodic number with length L = 2, L = 4 and L = 8

X = 12345 is periodic number with length L = 5

For given positive period length L and positive integer number A, Alice wants to find smallest integer
number X strictly greater than A that is periodic with length L.

Input
First line contains one positive integer number L (1 ≤ L ≤ 105) representing length of the period. Second
line contains one positive integer number A (1 ≤ A ≤ 10100000).

Output
One positive integer number representing smallest positive number that is periodic with length L and is
greater than A.

Examples
standard input standard output

3
123456

124124

3
12345

100100

Note
In first example 124124 is the smallest number greater than 123456 that can be written with period L =
3 (P = 124).

In the second example 100100 is the smallest number greater than 12345 with period L = 3 (P=100)

Page 9 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem H. Workout plan
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

Alan decided to get in shape for the summer, so he created a precise workout plan to follow. His plan is to
go to a different gym every day during the next N days and lift X[i] grams on day i. In order to improve
his workout performance at the gym, he can buy exactly one pre-workout drink at the gym he is currently
in and it will improve his performance by A grams permanently and immediately. In different gyms these
pre-workout drinks can cost different amounts C[i] because of the taste and the gym’s location but its
permanent workout gains are the same.

Before the first day of starting his workout plan, Alan knows he can lift a maximum of K grams. Help
Alan spend a minimum total amount of money in order to reach his workout plan. If there is no way for
him to complete his workout plan successfully output −1.

Input
The first one contains two integer numbers, integersN (1 ≤ N ≤ 105) andK (1 ≤ K ≤ 105) – representing
number of days in the workout plan and how many grams he can lift before starting his workout plan
respectively. The second line contains N integer numbers X[i] (1 ≤ X[i] ≤ 109) separated by a single
space representing how many grams Alan wants to lift on day i. The third line contains one integer number
A (1 ≤ A ≤ 109) representing permanent performance gains from a single drink. The last line contains
N integer numbers C[i] (1 ≤ C[i] ≤ 109) , representing cost of performance booster drink in the gym he
visits on day i.

Output
One integer number representing minimal money spent to finish his workout plan. If he cannot finish his
workout plan, output -1.

Examples
standard input standard output

5 10000
10000 30000 30000 40000 20000
20000
5 2 8 3 6

5

5 10000
10000 40000 30000 30000 20000
10000
5 2 8 3 6

-1

Note
First example: After buying drinks on days 2 and 4 Alan can finish his workout plan. Second example:
Alan cannot lift 40000 grams on day 2.

Page 10 of 11

Bubble Cup 12 Div 2
Belgrade, September 15, 2019

Problem I. Function Composition
Input file: standard input
Output file: standard output
Time limit: 0.5 seconds
Memory limit: 256 megabytes

We are definitely not going to bother you with another generic story when Alice finds about an array or
when Alice and Bob play some stupid game. This time you’ll get a simple, plain text.

First, let us define several things. We define function F on the array A such that F (i, 1) = A[i] and
F (i,m) = A[F (i,m − 1)] for m > 1. In other words, value F (i,m) represents composition A[...A[i]]
applied m times.

You are given an array of length N with non-negative integers. You are expected to give an answer on Q
queries. Each query consists of two numbers – m and y. For each query determine how many x exist such
that F (x,m) = y.

Input
The first line contains one integer N (1 ≤ N ≤ 2 · 105) – the size of the array A. The next line
contains N non-negative integers – the array A itself (1 ≤ Ai ≤ N). The next line contains one integer
Q (1 ≤ Q ≤ 105) – the number of queries. Each of the next Q lines contain two integers m and y
(1 ≤ m ≤ 1018, 1 ≤ y ≤ N).

Output
Output exactly Q lines with a single integer in each that represent the solution. Output the solutions in
the order the queries were asked in.

Example
standard input standard output

10
2 3 1 5 6 4 2 10 7 7
5
10 1
5 7
10 6
1 1
10 8

3
0
1
1
0

Note
For the first query we can notice that F (3, 10) = 1, F (9, 10) = 1 and F (10, 10) = 1.

For the second query no x satisfies condition F (x, 5) = 7.

For the third query F (5, 10) = 6 holds.

For the fourth query F (3, 1) = 1.

For the fifth query no x satisfies condition F (x, 10) = 8.

Page 11 of 11

