
2021-2022 ICPC, Northern Eurasia, Southern and Volga Russian Regional Contest
Saratov, Russia, November 21, 2021

Problem A. Armor and Weapons
Author: Ivan Androsov

Preparation: Ivan Androsov

Among two armor sets, one with the greater index is always better. The same can be said about two
different weapons. So, it is always optimal to use and obtain the best possible weapon or armor.

This observation allows us to model this problem with dynamic programming or shortest paths: let dpx,y
be the minimum time in which Monocarp can obtain the armor x and the weapon y; and in each transition,
we either get the best weapon we can or the best armor we can. Similarly, we can build a graph where
the vertices represent these pairs (x, y), and the edges represent getting the best possible weapon/armor,
and find the shortest path from (1, 1) to (n,m) using BFS.

Unfortunately, it is O(nm). But we can modify the BFS in the following fashion: let’s analyze each layer
of BFS (a layer is a set of vertices with the same distance from the origin). In each layer, there might be
some redundant vertices: if two vertices (x, y) and (x′, y′) belong to the same layer, x′ ≤ x and y′ ≤ y,
then the vertex (x′, y′) is redundant.

If we filter each layer, removing all redundant vertices from it and continuing BFS only from non-redundant
ones, the solution will be fast enough. To prove it, let’s analyze the constraints on the answer. Suppose
n ≥ m. The answer can be bounded as O(logm + n

m), since we can reach the pair (m,m) in O(logm)
steps using something similar to Fibonacci sequence building, and then go from (m,m) to (n,m) in n

m
steps. And the number of non-redundant states on each layer is not greater than m (because, of two states
with the same weapon or the same armor set, at least one is redundant). So, if we don’t continue BFS
from redundant vertices, it will visit at most O(m · (logm+ n

m)) = O(m logm+ n) vertices. There might
be another logarithm in the asymptotic complexity of the solution, if you use something like a set to store
all combinations that synergize well, but this implementation is still fast enough.

Problem B. Special Permutation
Author: Mike Mirzayanov

Preparation: Mike Mirzayanov

There are many different constructions that give the correct answer, if it exists. In my opinion, one of the
most elegant is the following one.

a should always be present in the left half, and b should be present in the right half, but the exact order
of elements in each half doesn’t matter. So, it will never be wrong to put a in the first position, and b in
the second position.

As for the remaining elements, we want elements of the left half to be as big as possible (since they
shouldn’t be less than a), and elements of the right half — as small as possible (since they shouldn’t be
greater than b). Let’s put the elements n, n− 1, n− 2, . . . , 1 (excluding a and b) on positions 2, 3, 4, . . . ,
n − 1, respectively, so the elements in the left half are as big as possible, and the elements in the right
half are as small as possible.

After constructing a permutation according to these rules, we should check if it meets the constraints
(and print it if it does).

Problem C. Athletes
Author: Mike Mirzayanov

Preparation: Mike Mirzayanov

Suppose we want to include exactly k athletes from sport A and exactly k athletes from sport B (it’s not
always possible, but nevertheless). Obviously, each athlete should compete in their own sport. It’s also
quite obvious that we need to choose k best athletes from sport A and k best athletes from sport B, so
let’s sort the athletes in each sport in non-ascending order of their skills, and pick k first values from each
of the two obtained lists of athletes.

Page 1 of 7

2021-2022 ICPC, Northern Eurasia, Southern and Volga Russian Regional Contest
Saratov, Russia, November 21, 2021

It’s not always optimal (and even not always possible) to choose exactly k athletes from each sport. So,
let’s consider that we choose z athletes from sport A and 2k − z athletes from sport B. In each of these
cases, it’s suboptimal to force an athlete of sport A to compete in B and an athlete of sport B to compete
in A at the same time. So, there are three cases:

• z < k: we should pick z best athletes from sport A, 2k − z best athletes from sport B, and force
k − z athletes of sport B to compete in A, so the total skill decreases by y(k − z);

• z = k: already discussed in the beginning of the editorial;

• z > k: we should pick z best athletes from sport A, 2k − z best athletes from sport B, and force
z − k athletes of sport A to compete in B, so the total skill decreases by x(z − k).

We should try all values of z from 0 to 2k and find which of them gives the maximum possible sum of
skills.

Note: if you sort the athletes and try to get the sum of several best skills for each value of z using a
for-loop, your solution will be too slow (it will run in something like O(kn log n) or O(k2 + n log n)).
Instead, we can sort both lists of athletes beforehand, and then either maintain pointers to the last chosen
athletes in both lists to update the sum of skills in O(1) when the value of z increases by 1, or prepare
partial sum array for each of the sorted lists to get the sum of several first values without running a loop.

Problem D. Max Sum Array
Author: Adilbek Dalabaev

Preparation: Adilbek Dalabaev

Firstly, let’s prove that at first and last positions of a the most frequent elements should be placed (but
not necessary the same). WLOG, let’s prove that ca1 ≥ cai for any i > 1.

By contradiction, let’s p be the smallest index such that ca1 < cap . What happens if we swap them? Since
p is the first such index then there are no ai = ap for i < p, so “contribution” of ap will increase by exactly
inc = (cap − 1) · (p− 1). From the other side, contribution of a1 consists of two parts: pairs with elements
from (p, n] and from (1, p). For all elements from (p, n] decrease will be equal to dec1 = ca1 [p+1, n] ·(p−1)
and from elements in (1, p) dec2 ≤ ca1 [2, p− 1] · (p− 1).

So, the total decrease dec after moving a1 to position p equal to dec = dec1 + dec2 ≤ (ca1 − 1) · (p − 1).
The total difference in such case is equal to inc− dec ≥ (p− 1) · (cap − ca1) > 0. So, our placement is not
optimal — contradiction.

Let’s suggest that there is exactly one e with maximum ce. According to what we proved earlier, both a1
and an must be equal to e. Contribution of the first and last elements will be equal to: (n − 1) for pair
(1, n) and for each element i (1 < i < n) with ai = e we add (i− 1)+ (n− i) = (n− 1) for pairs (1, i) and
(i, n). So, the total contribution of a1 = an = e is equal to (n− 1) · (ce − 1).

Note that this contribution is independent of positions of other e in the array a, so that’s why we can cut
first and last elements of a and solve the task recursively.

Unfortunately, in the initial task we may have several e1, e2, . . . , ek with maximum cei . But we in the
similar manner can prove that the first (and last) k elements a1, . . . , ak should be some permutation of
e1, . . . ek. Now, let’s prove that any permutation of first and last k elements is optimal.

Suppose, positions of ei are li (1 ≤ li ≤ k) and ri (n−k+1 ≤ ri ≤ n). Then the contribution of ei is equal

to (cei − 1) · (ri − li). The total contribution of all ei is
k∑

i=1
(cei − 1) · (ri − li) = (ce1 − 1)(

k∑
i=1

ri −
k∑

i=1
li) =

(ce1−1)((n−k)k+ k(k+1)
2 − k(k+1)

2) = (ce1−1)k(n−k). This contribution doesn’t depend on chosen li and
ri, so any permutation of first k elements and any permutation of last k elements give optimal answer.

As a result, the algorithm is following:

Page 2 of 7

2021-2022 ICPC, Northern Eurasia, Southern and Volga Russian Regional Contest
Saratov, Russia, November 21, 2021

• Find all maximums e1, . . . , ek in c.

• If ce1 = 1 then any permutation of remaining elements has f(a) = 0 (there are k! such permutations).

• Otherwise, add (ce1 − 1)k(n− k) to the total balance, and multiply the number of variants by (k!)2.

• Cut prefix and suffix by making cei = cei − 2 for each ei (obviously, n = n − 2k) and repeat the
whole process.

We can implement the algorithm fast if we keep the number of ci equal to each val from 0 to C (C ≤ 106).
So the total complexity is O(n+ C).

Problem E. Request Throttling
Author: Dmitry Klenov

Preparation: Dmitry Klenov

The first step required to solve this problem is to go through a pretty long statement (it seems that the
length of the statement is the main reason why this problem was not getting a lot of accepted solutions).
The problem asks us to maintain the throttling limits and the number of processed queries for several
IPv4 subnets, and update them when a request appears.

Firstly, it is impossible to explicitly store the number of requests for each subnet, since there are about
233 different subnets. Instead, we will use an associative data structure (map in C++, dict in Python,
HashMap or TreeMap in Java, etc.) to store the subnets where at least one request appeared, and if we
need to find out the number of requests for some subnet which doesn’t appear in our data structure, we
know that it is 0.

Secondly, we need to find an easy way to iterate through all parent subnets of a given IP address. One of
the solutions to this subproblem is to convert each IP address into an integer using the formula given in
the statement, and obtain the i-th parent subnet by, for example, applying bitwise AND with an integer
such that its i least significant bits are zeroes, and the next 32 − i bits are ones. Then, we can easily
check the throttling limits and the number of processed requests for parent subnets of an IP address, and
update them if a request passes.

Small implementation note: it is possible to store all addresses and subnet IDs in 32-bit integers, but you
have to take care of integer overflow (for example, overflow is processed differently in int and unsigned int
types in C++, and this can cause some unexpected behavior). One of the ways to handle these overflow
issues is to use 64-bit integers instead of 32-bit ones.

Problem F. X-Magic Pair
Author: Vladimir Petrov

Preparation: Vladimir Petrov

This problem has a GCD-based solution.

Firstly, lets’ try to solve it naively. Always suppose that a > b. If this is not true, let’s swap a and b.
Firstly, if b > a− b, let’s do b := a− b. Okay, now let’s subtract b from a until b ≥ a− b again and repeat
this algorithm till a = 0 or b = 0. If, after some step, we get a = x or b = x, we are done, and the answer
is YES. If a = 0 or b = 0, and we didn’t get x then the answer is NO.

Okay, we can see that we always subtract the minimum possible b from a and trying to maintain this
condition. It can be proven that this algorithm yields all possible integers that are obtainable by any
sequence of the operations from the problem statement (either in a or in b).

Now we have to speed up this solution somehow. Obviously, most operations are redundant for us in this
particular problem. The first thing is that we can skip all operations till b becomes greater than a−b. The
number of such operations is ba−b2b c. And the second thing is that we can skip all operations till we get x
in a. The number of such operations is ba−xb c. For simplicity, this part can be also written as ba−x2b c. This

Page 3 of 7

2021-2022 ICPC, Northern Eurasia, Southern and Volga Russian Regional Contest
Saratov, Russia, November 21, 2021

doesn’t affect the time complexity much, but the formula for the final number of operations we can skip
will be simpler. This number equals cnt = max(1, ba−max(b,x)

2b c) (in fact, we take the minimum between
two values written above, because we don’t want to skip any of these two cases). So, we can transform
the pair (a, b) to the pair (a− b ∗ cnt, b) and continue this algorithm.

There are also simpler approaches using the same idea but in a cooler way.

Time complexity: O(log a) per test case.

Problem G. Chat Ban
Author: Vladimir Petrov

Preparation: Vladimir Petrov

This is a pretty obvious binary search problem. If we get banned after y messages, we also get banned
after y + 1, y + 2 and so on messages (and vice versa, if we don’t get banned after y messages, we also
don’t get banned after y − 1, y − 2 and so on messages).

For simplicity, let’s split the problem into two parts: when we check if we’re getting banned after y
messages, let’s handle cases y < k and y ≥ k separately.

Recall that the sum of the arithmetic progression consisting of integers 1, 2, . . . , y is y(y+1)
2 . Let it be

cnt(y).

The first case is pretty simple: the number of emotes we send with y messages when y < k is y(y+1)
2 which

is cnt(y). So we only need to check if cnt(y) ≥ x.

The second case is a bit harder but still can be done using arithmetic progression formulas. Firstly,
we send all messages for y ≤ k (the number of such messages is cnt(k)). Then, we need to add
(k − 1) + (k − 2) + . . . + (y − k) messages. This number equals to cnt(k − 1) − cnt(2k − 1 − y) (i.e.
we send all messages from k− 1 to 1 and subtract messages from 1 to 2k− 1− y from this amount). The
final condition is cnt(k) + cnt(k − 1)− cnt(2k − 1− y) ≥ x.

Time complexity: O(log k) per test case.

Problem H. Messages
Author: Ivan Androsov

Preparation: Ivan Androsov

First of all, let’s rewrite the answer using expectation linearity. The expected number of students who
read their respective messages is equal to F1 +F2 + · · ·+Fn, where Fi is a random value which is 1 if the
i-th student reads the message mi, and 0 if the i-th student doesn’t do it.

Let’s analyze the expected value of Fi. Suppose Monocarp pins the messages c1, c2, . . . , ct. There are three
cases:

• if mi /∈ [c1, c2, . . . , ct], then the i-th student won’t read the message mi, so Fi = 0;

• if mi ∈ [c1, c2, . . . , ct] and t ≤ ki, then the i-th student will definitely read the message mi, so Fi = 1;

• if mi ∈ [c1, c2, . . . , ct] and t > ki, then Fi =
ki
t .

If we iterate on the number of messages we pin t, we can calculate the sum of Fi for each message
(considering that we pin it), sort all of the messages and pick t best of them. So, we have a solution
working in O(n2 log n).

The only thing we need to improve this solution sufficiently is the fact that we don’t have to consider
the case t > 20. Since every ki is not greater than 20, the sum of Fi for a message in the case t = 20
is the same as this sum of Fi in the case t = 21, but multiplied by the coefficient 20

21 — and we pick 21

Page 4 of 7

2021-2022 ICPC, Northern Eurasia, Southern and Volga Russian Regional Contest
Saratov, Russia, November 21, 2021

best values, their sum multiplied by 20
21 is not greater than the sum of 20 best values. The same holds for

t = 22 and greater.

Problem I. Tetris
Authors: Mike Mirzayanov and Ivan Androsov

Preparation: Ivan Androsov

Let’s analyze each row of the resulting field. Each row will contain several pieces which form an
ascending sequence; i. e. if the pieces in a row block cells [L1, R1], [L2, R2], . . . , [Lm, Rm], the condition
L1 ≤ R1 < L2 ≤ R2 < · · · < Lm ≤ Rm] must hold. We can remodel this as the following problem: create
a graph with n vertices representing pieces, and edges i → j meaning that Lj > Ri. We have to find k
vertex-disjoint paths in this graph such that their total cost is maximum possible, and this problem can
be solved with minimum cost flows.

Unfortunately, even building this graph is O(n2), running a minimum cost flow on the network for this
graph can be about O(n3k), which is too slow. Let’s instead focus on the property of this graph: an edges
i→ j means that Lj > Ri. We can build a flow network with 109+1 vertices, where vertex 0 is the source,
vertex 109 is the sink, and each vertex i < 109 has an outgoing edge to the vertex i+ 1 with capacity k.
To handle tetris piece j, we create an edge from Lj to Rj+1 with capacity of 1 and cost of −cj . Finding a
minimum cost k-flow in this network allows us to calculate the absolute value of the maximum total cost
of the chosen pieces (each unit of flow will go through edges representing the tetris pieces that can appear
in the same row, and there will be only k such “paths”). To get rid of the insane number of vertices, we
can see that if a vertex i only has an ingoing edge from i − 1 and an outgoing edge to i + 1, we can get
rid of it, directing the edge from i − 1 to i + 1. So, we only have to consider the vertices of the form Lj

and Rj + 1 in our network.

The size of the network will be O(n), so the implementation of minimum cost flow with Ford-Bellman
algorithm works in O(n2k).

Problem J. Bongcloud Opening
Author: Ivan Androsov

Preparation: Ivan Androsov

There are two solutions to this problem, both utilize a knapsack-like dynamic programming.

Solution 1. Implement a dynamic programming of the form dp[0..n][−k..k], where dp[i][j] is true if and
only if Hikaru can play i first matches so that his resulting rating is x+ j. Transition from each state is
choosing which opening Hikaru will use in the i-th match, and after that, modeling the next games in
O(n) until the rating is again in [x− k, x+ k]. Don’t forget that the answer should be updated from all
states, not only from dp[n][j]!

Solution 2. Just implement a dynamic programming of the form: dp[i] is the set of all possible ratings
Hikaru can have after i first games. The size of each set will be O(nk) since each number in the set i
represents some state of the form “Hikaru had rating y after the game j”, where j < i and y ∈ [x−k, x+k].
So, the runtime of this solution will be O(n2k log (nk)) or O(n2k) depending on whether you use a set
based on a binary search tree or a hash table.

Problem K. Ice Cream Van
Author: Elena Rogacheva

Preparation: Mikhail Piklyaev

The main idea of the solution to this problem is to iterate on x from 0 to infinity (obviously, considering
only values of the form ai and ai− 1) and maintain the following graph: from the vertex i ≤ n, there will
be an outgoing edge to the vertex i+ 1 if the i-th type of ice cream is mediocre, or to the vertex i+ ki if
the i-th type of ice cream is tasty. This graph is a combination of rooted trees, and we have to maintain

Page 5 of 7

2021-2022 ICPC, Northern Eurasia, Southern and Volga Russian Regional Contest
Saratov, Russia, November 21, 2021

the sum on the path leading from the vertex 1 when we have to change edges due to increasing of the
value x.

There are two data structures which can maintain this graph. One of them is the Link-Cut Tree, which is
kind of overkill for this problem (although, if you have an implementation of Link-Cut Tree in your team
reference, you can use it straightforwardly). The second data structure is square root decomposition, and
I will explain how to use it a bit more in detail.

Divide all n vertices into blocks of size m, the first block should contain vertices [1,m], the second block
— [m+ 1, 2m], and so on. For each vertex in each block, calculate and maintain two values:

• toi — the first vertex on the path from i which does not belong to the same block as i;

• costi — the sum on the path from i to toi.

Since the number of blocks is n
m , we can use the calculated values of toi and costi to compute the sum on

the path leading from 1 in O(n
m). To redirect an edge leading from the vertex i, we can utilize the fact

that only the values in the block where the vertex i belongs can be changed, so we can recalculate this
block in O(m). So, each change of the value x is processed in O(n

m +m), and by choosing m close to
√
n,

we can solve the problem in O(n
√
n).

Problem L. Smash the Trash
Author: Elena Rogacheva

Preparation: Dmitry Stepanenko

Obviously, if k workers can do the job, k+1 workers can do it as well. So the main idea of the solution is
to use binary search on the answer, finding the minimum required number of people in log 2 · 105 queries
of the form “can k people clean everything?”

Let’s analyze to process each query of this form in O(n). We will iterate on the places where the cleaning
must be done, and each day we will try to dispose of as much trash as possible and move as little trash
to the next place as possible.

Suppose there are k people involved in the cleaning process and x kilograms of trash on the current place.
Then we have to consider three cases:

• if x ≤ k, we can clean all trash from the current place;

• if x > 2k or x > k and the current place is the last one, k people can’t get the job done;

• if k < x ≤ 2k and the current place is not the last one, we should dispose of as much trash
as possible. x − k = t means that exactly t people should “process” 2 kilograms of trash each, so
exactly 2t kilograms of trash should be carried to the next place, and k−t kilograms will be disposed
of.

Since the complexity of each query is O(n), and we use binary search to find the answer, the total
complexity of the solution is O(n logA) (where A is up to 2 · 105).

Problem M. Distance
Author: Ivan Androsov

Preparation: Ivan Androsov

There is a solution in O(1), but in fact, a solution that checks all points with x-coordinate from 0
to 50 and y-coordinate from 0 to 50 is fast enough. There’s no need to check any other points, since
d(A,C) + d(B,C) = d(A,B) implies that point C is on one of the shortest paths between A and B.

Page 6 of 7

2021-2022 ICPC, Northern Eurasia, Southern and Volga Russian Regional Contest
Saratov, Russia, November 21, 2021

Problem N. Haiku
Author: Ivan Androsov

Preparation: Mikhail Piklyaev and Dmitry Klenov

For each phrase in the input, let’s calculate two values:

• v is the number of vowels in the phrase (excluding y and Y);

• y is the number of characters y and Y in the phrase.

Suppose the phrase should contain exactly V vowels (V is either 5 or 7). The maximum number of vowels
we can obtain is v+ y (if each Y and each y is a vowel), and the minimum number is v (if each Y and each
y is a consonant). So, we need to ensure that v ≤ V ≤ v + y. If this condition holds for every phrase of a
three-line testcase, it can match the pattern 5− 7− 5, otherwise it cannot.

Small implementation note: it can be worthwhile to transform each letter into lower (or upper) case using
some built-in function, for example, tolower in C++.

Page 7 of 7

