Microsoft Q# Coding Contest - Winter 2019 - Warmup Round
February 22 - 25, 2019

Mariia Mykhailova
Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA, United States

TASKS AND SOLUTIONS
G1. AND oracle

Implement a quantum oracle on N qubits which implements the following function:
f(il:) =2ToANT1 N - NTN_1
You have to implement an operation which takes the following inputs:

e an array of N qubits = in arbitrary state (input register),
e a qubit y in arbitrary state (output qubit),

and performs a transformation |z)|y) — |z)|y @ f(x)). The operation doesn’t have an output; its output is the
state in which it leaves the qubits.

Solution. The effect of the AND oracle can be re-worded as follows: given the input register and the output qubit,
flip the state of the output qubit if and only if all qubits in the input register are in the state |1).

This is exactly the definition of a controlled version of the X gate: the X gate flips the state of the qubit to which
it is applied, and the controlled version of an operation applies this operation if and only if all control qubits are in
the state |1).

Q# has built-in gates for the single-controlled X (CNOT) and doubly-controlled X (CCNOT); in general you can
use Controlled functor to create a version of an operation controlled on an arbitrary array of qubits.

Listing 1. AND oracle

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (x : Qubit[], y : Qubit) : Unit {
body (...) {
Controlled X (x, y);
}

adjoint auto;

G2. OR oracle

Implement a quantum oracle on N qubits which implements the following function:
f((]?) :IOV$1V"'V$N_1
You have to implement an operation which takes the following inputs:

e an array of N qubits z in arbitrary state (input register),

e a qubit y in arbitrary state (output qubit),

https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.cnot
https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.ccnot
https://docs.microsoft.com/en-us/quantum/language/type-model#controlled

and performs a transformation |z)|y) — |z)|y ® f(z)). The operation doesn’t have an output; its output is the
state in which it leaves the qubits.

Solution. We can use De Morgan’s laws to rewrite the function implemented by the OR oracle as follows:
fl®)=—(—zo Amx1 A - AN—TN_1)

Thus, the effect of the OR oracle can be re-worded as follows: given the input register and the output qubit, flip
the state of the output unless all qubits in the input register are in the state |0). This means that we can implement
the operation in the following way:

1. Flip the state of the output qubit to cover majority of the cases.
2. Flip all qubits of the input register.

3. Apply Controlled X with the input register as control and the output qubit as target - this will flip the state of
the output qubit again (to revert the effect of the first flip) if all qubits in the input register started in the state
0).

4. Flip all qubits of the input register to return them to their original state (since the oracle should not change the
state of its input).

For convenience we can do steps 2-4 using ControlledOnlInt library operation.

Listing 2. OR oracle

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (x : Qubit[], y : Qubit) : Unit {
body (...) {
X(y);
(ControlledOnInt (0, X)) (x, y);
}

adjoint auto;

G3. Palindrome checker oracle

Implement a quantum oracle on N qubits which checks whether the vector « is a palindrome (i.e., implements the
function f(x) =1 if is a palindrome, and 0 otherwise).
You have to implement an operation which takes the following inputs:

e an array of N (1 < N < 8) qubits z in an arbitrary state (input register),
e a qubit y in an arbitrary state (output qubit),

and performs a transformation |z)|y) — |z)|y @ f(x)). The operation doesn’t have an output; its output is the
state in which it leaves the qubits.

Solution. This problem is trickier, since you can not express the condition the bit string is a palindrome as a
single AND or OR expression. You can express it in the following way:

fl@)=(xo=an_1)A(x1 =2N_2) A"

First we need to be able to check that the states of two qubits are equal. You can rewrite the condition z; = z; as
xz; @ x; = 0, recall that to compute XOR of two qubits you can do two CNOTs with each of the qubits as control and
the target qubit as target, and finally flip the target qubit, since the condition is true if XOR is 0.

To combine the results of the individual comparisons into the value of the function, you need to:

https://en.wikipedia.org/wiki/De_Morgan%27s_laws
https://docs.microsoft.com/en-us/qsharp/api/canon/microsoft.quantum.canon.controlledonint

allocate an array of auxillary (ancilla) qubits,

e compare each pair of qubits and write the results into the corresponding ancilla qubit,

calculate AND of the states of the ancilla qubits and write the result into the target qubit,

e (important!) uncompute the states of the ancilla qubits to return them to |0) state so that they can be released.

We'll focus on the last step in more detail, since it contains an important subtlety. You can not simply measure the
ancilla qubits to reset them before release, since this can affect the state of the other qubits. Consider, for example,
the calculation for input/output in state (|00), +[01),) ® |0),. We need to end up in the state |00), |1), +[01),(0),
Here are the intermediary states of the system after each step:

e allocate the ancilla: (]00), +(01),) ® |0), [0),
e compare input qubits: (|00}, [1), +[01),[0),) ®[0),

o calculate the value of the function based on the state of the ancilla: |00}, |1), (1), + [01),]0),[0),

e if we measure the ancilla qubit now, the state of the system will collapse to either [00), (1), or |01),0),,
depending on the outcome of the measurement, instead of the superposition state we need. However, if we
perform adjoint of the step 2 here, undoing the computation we did to get the state of the ancilla, the state
of the system will become (|00), [1), + [01),[0),) ® [0),, and we'll be able to release the ancilla qubit without
damaging the state of other qubits.

The pattern of apply transformation U - apply transformation V - apply adjoint of transformation U
is extremely widespread in quantum computing, so there is a library operation With which implements it.

Listing 3. Palindrome checker oracle

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation EvaluateEqualityClauses (x : Qubit[], ancillaRegister : Qubit[]) : Unit {
body (...) {

let N = Length(x);

for (1 in 0 .. N/ 2 - 1) {
// Compute XOR of x[i] and x[N - 1 - i] into anc[i]
CNOT(x[i], ancillaRegister[i]);
CNOT(x[N - 1 - i], ancillaRegister[i]);
// Negate it (XOR has to equal O for equality to be 1)
X(ancillaRegister[i]);

}

adjoint auto;

}

operation Solve (x : Qubit[], y : Qubit) : Unit {
body (...) {
let N = Length(x);
using (anc = Qubit[N / 2]) {
WithA(EvaluateEqualityClauses(x, _), Controlled X(_, y), anc);
}
}

adjoint auto;

https://docs.microsoft.com/en-us/qsharp/api/canon/microsoft.quantum.canon.with

Ul. Anti-diagonal unitary

Implement a unitary operation on N qubits which is represented by an anti-diagonal matrix (a square matrix of
size 2V which has non-zero elements on the diagonal that runs from the top right corner to the bottom left corner
and zero elements everywhere else).

For example, for N = 2 the matrix of the operation should have the following shape:

... X
. X
X
X...

Here X denotes a non-zero element of the matrix (a complex number which has the square of the absolute value
greater than or equal to 107°), and . denotes a zero element of the matrix (a complex number which has the square
of the absolute value less than 107°).

Solution. Let’s consider applying U; to the basis state |0...0): the result is described by the first column of the matrix
you are given. Only the last row of that column contains a non-zero element, i.e., U;|0...0) = ag._ o|1...1).

The operation you need to implement (let’s denote it as Uy) is a unitary, thus it preserves the inner product of the
vectors it is applied to, and in particular it preserves the norm of the vectors it is applied to. The norm of the basis
vector |0...0) is 1, so the norm of U;]0...0) also has to be 1, thus |ag. o] = 1.

We can apply the same logic to the rest of the entries in the matrix, and realize that the absolute value of each
non-zero element of the matrix has to be 1. For simplicity we can choose all these elements to equal 1; here is the
example for N = 2:

0001
0010
Ui=10100
1000

Now, we need to actually implement the operation which corresponds to this unitary matrix. We can again consider
its effect on each basis state, starting with the case N = 2:

This is exactly the result of flipping each qubit independently, which can be done by applying an X gate on each
qubit.

You can also think of it as representing the matrix U; as a tensor product: U; = X ® X, where X = (1) (1) . As
the size of the matrix grows, it still can be represented as a tensor product of the smaller matrix of this shape and an
X gate.

Listing 4. Anti-diagonal unitary

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (qs : Qubit[]) : Unit {
ApplyToEach(X, gs);
}

U2. Chessboard unitary

Implement a unitary operation on N qubits which is represented by a square matrix of size 2V in which zero
and non-zero elements form a chessboard pattern with alternating 2x2 squares (top left square formed by non-zero
elements). For example, for N = 3 the matrix of the operation should have the following shape:

XX. .XX..
XX. .XX..
XX XX
XX XX
XX. .XX..
XX. .XX..
.. XX. . XX
XX XX

Solution. If you look at the UnitaryPatterns kata, you will recognize this task as a something between tasks 3 (a
pattern of two large diagonal blocks) and 4 (a chessboard pattern of 1x1 squares). Both of them are formed using
only Hadamard gates, so it makes sense to try and see if the pattern in this task can be expressed this way as well.

Consider the case of N = 2; the pattern you need to implement in this task is exactly the same as the pattern of
two large diagonal blocks, which you can obtain by applying an H gate to the first qubit and doing nothing to the
second qubit. To scale this pattern as you add qubits, you need to apply H gates to the newly added qubits; a little
experimentation shows that in the end you need to apply an H gate to each qubit except the second one.

More formally, you can think about this task in terms of tensor products. If you multiply H by a matrix A, you
effectively repeat the pattern of that matrix 4 times (once in each of the quarters of the result); if you multiply a
matrix A by H, you replace each zero element of A with a block of 4 zeroes, and each non-zero element with a block
of non-zeroes. Check it manually or using a tensor product calculator like this one.

The smallest block you need to obtain to repeat it is

11 00

10 1 1 1 —-10 O

I®H:[O 1]®[1 —1}: 001 1

0 0 1 -1

Now you can repeat it as many times as you need by multiplying H gates by it:

1 1 0 0 1 1 0 07
1-10 0 1 -1 0 O
O 011 0 0 1 1
[teH I@H] |00 1-10 0 1 -1
H®(I®H)_{I®H —I®H]_ 1100 —1-10 0
1-10 0 -1 1 0 O
o 011 0 0 —-1-1
0 0 1 -1 0 0 -1 1|

In the end the tensor product for the pattern of N qubits is H ® ... ® H ® I ® H. Remember that the pattern is
given using little endian indices, so to translate the tensor product of the matrices to the gates applied to the qubits
you need reverse the order of the gates: the first gate in the tensor product is applied to the last qubit, the second
gate - to the second-to-last qubit etc.

Listing 5. Chessboard unitary

namespace Solution {
open Microsoft.Quantum.Primitive;

operation Solve (gqs : Qubit[]) : Unit {
H(gs[0]);
for (i in 2 .. Length(gs) - 1) {
H(gs[il);
}

https://github.com/Microsoft/QuantumKatas/tree/master/UnitaryPatterns
https://www.dcode.fr/kronecker-product

U3. Block unitary

Implement a unitary operation on N qubits which is represented by the following square matrix of size 2/V:

e top right and bottom left quarters are filled with zero elements,

e top left quarter is an anti-diagonal matrix of size 2V,

e bottom right quarter is filled with non-zero elements.

For example, for N = 2 the matrix of the operation should have the following shape:

X
X...
XX
XX

Solution. This matrix can not be represented as a tensor product, but it clearly involves two patterns from previous
tasks - the top left block is the pattern from task Ul, obtained as a tensor product of X gates, and the bottom right
block is a tensor product of Hadamard gates. But how to combine them?

The top left block is the area where the most significant bit of both input and output indices equals 0. (Remember
that with little endian encoding of the indices this bit is stored in the last qubit.) This means that the left half of the
matrix can be described as follows: if the last qubit of the input is in state |0), leave that qubit unchanged and apply
an X gate to each of the rest of the qubits. This can be done using zero-controlled version of the transformation,
i.e., by flipping the state of the last qubit, applying controlled transformation and flipping the state of the last qubit
again.

Similarly, the bottom right block is the area where the most significant bit equals 1, and its effect on the qubits can
be described as follows: if the last quibt of the input is in state |1), leave that qubit unchanged and apply a Hadamard
gate to each of the rest of the qubits.

Listing 6. Block unitary

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (gs : Qubit[]) : Unit {
ApplyToEach(Controlled H([Tail(gs)], _), Most(gs));
ApplyToEach((ControlledOnInt (0, X)) ([Tail(qgs)], _), Most(gs));

	Microsoft Q# Coding Contest - Winter 2019 - Warmup Round February 22 - 25, 2019
	Tasks and Solutions
	G1. AND oracle
	G2. OR oracle
	G3. Palindrome checker oracle
	U1. Anti-diagonal unitary
	U2. Chessboard unitary
	U3. Block unitary

