
Microsoft Q# Coding Contest - Summer 2018
July 6 - 9, 2018

Mariia Mykhailova and Martin Roetteler
Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA, United States

TASKS AND SOLUTIONS

A1. Generate superposition of all basis states

You are given N qubits (1 ≤ N ≤ 8) in zero state |0...0〉. Your task is to generate an equal superposition of all 2N

basis vectors on N qubits:

|S〉 =
1√
2N

(
|0...0〉+ ...+ |1...1〉

)
.

You have to implement an operation which takes an array of N qubits as an input and has no output. The “output”
of the operation is the state in which it leaves the qubits.

Solution. The Hadamard gate H maps |0〉 7→ |+〉 and |1〉 7→ |−〉, where |+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉).

This specifies the action of H on the basis |0〉 , |1〉, which extends to an arbitrary state α |0〉 + β |1〉 by linearity,
i.e., it maps α |0〉 + β |1〉 7→ α |+〉 + β |−〉. Note that applying unitary operations U0, . . . , UN−1 to separate qubits
|q0〉 , . . . , |qN−1〉, i.e., |qi〉 7→ Ui |qi〉, mathematically corresponds to applying the tensor product (sometimes called
Kronecker product) U0⊗. . .⊗UN−1 which acts on the state vector of the N qubits. To get familiar with the Hadamard
gate, other primitive quantum gates, and the concept of tensor products, look up resources such as Quantum logic
gate @ Wikipedia or Kronecker product @ Wikipedia, consult a gentle introduction, or jump directly into the Q#
docs. Specifically, if all Ui are equal to the Hadmard gate, we obtain H⊗N which works out to:

H =
1√
2

[
1 1
1 −1

]
, H⊗2 = H ⊗H =

1

2

 1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , . . .

This means that the first column of H⊗N is the vector 1√
2N

(1, 1, . . . , 1)T (here (. . .)T denotes transposition), or in

other words 1√
2N

(|0...0〉+ ...+ |1...1〉)T . The action of a unitary U on a state vector |q〉 mathematically corresponds

to the matrix vector product |q〉 7→ U |q〉, i.e., upon input |q〉 = |0 . . . 0〉 which corresponds to the column vector
(1, 0, 0, . . . , 0)t of length 2N , the result is precisely our target 1

2N
(|0...0〉 + ... + |1...1〉)T . All we need to do therefore

is to apply the H gate to each of the given qubits. This can be done with a simple for loop.

Listing 1. Generate superposition of all basis states

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (qs : Qubit[]) : ()
{

body
{

for (i in 1 .. Length(qs)) {
H(qs[i-1]);

}
}

}
}

https://en.wikipedia.org/wiki/Quantum_logic_gate
https://en.wikipedia.org/wiki/Quantum_logic_gate
https://en.wikipedia.org/wiki/Kronecker_product
https://blogs.msdn.microsoft.com/uk_faculty_connection/2018/02/06/a-beginners-guide-to-quantum-computing-and-q/
https://docs.microsoft.com/en-us/qsharp/
https://docs.microsoft.com/en-us/qsharp/
https://docs.microsoft.com/en-us/quantum/libraries/control-flow

2

A2. Generate superposition of zero state and a basis state

You are given N qubits (1 ≤ N ≤ 8) in zero state |0...0〉. You are also given a bitstring bits which describes a
non-zero basis state on N qubits |ψ〉. Your task is to generate a state which is an equal superposition of |0...0〉 and
the given basis state:

|S〉 =
1√
2

(
|0...0〉+ |ψ〉

)
You have to implement an operation which takes the following inputs:

� an array of qubits qs,

� an arrays of boolean values bits representing the basis state |ψ〉. This array will have the same length as the
array of qubits. The first element of this array bits[0] will be true.

The operation doesn’t have an output; its “output” is the state in which it leaves the qubits. An array of boolean
values represents a basis state as follows: the i-th element of the array is true if the i-th qubit is in state |1〉, and
false if it is in state |0〉. For example, array [true; false] describes 2-qubit state |ψ〉 = |10〉, and in this case the
resulting state should be 1√

2

(
|00〉+ |10〉

)
= |+〉 ⊗ |0〉.

Solution. The controlled NOT gate, or CNOT gate for short, is a useful gate to entangle qubits. Mathematically, its
action is given by |x, y〉 7→ |x, x⊕ y〉, where x, y ∈ {0, 1} and ⊕ denotes the exclusive OR (XOR) operation. In other
words, if y = 0, then the CNOT gate creates a “copy” of the basis state |x〉 as it maps |x, 0〉 7→ |x, x〉. We put copy
in quotes as this only works for the basis states of the computational basis and does not create a bona fide copy of an
arbitrary quantum state α |0〉+ β |1〉.

Note further that a Hadamard gate, applied to the first qubit of an array of qubits that is initially in the |0 . . . 0〉 =

|0〉⊗N state, will map this state to |+〉 |0〉⊗(N−1) = 1√
2
(|0 0 . . . 0〉 + |1 0 . . . 0〉). Due to the mentioned “copying”

property, applying for instance the CNOT gate between the first qubit and the third qubit of this state would now
map this state to 1√

2
(|0 0 . . . 0〉 + |1 0 1 . . . 0〉). Applying another CNOT from the first qubit to the fourth qubit

would create 1√
2
(|0 0 . . . 0〉 + |1 0 1 1 . . . 0〉) and so on, i.e., any desired bit pattern can be created by applying the

corresponding sequence of CNOT gates.
The Q# code does this by first applying a Hadamard gate to the first qubit and then iterating over the elements

of the bit vector bits. A classical if statement is used to apply the CNOTs as needed.

Listing 2. Generate superposition of zero state and a basis state

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (qs : Qubit[], bits : Bool[]) : ()
{

body
{

// Hadamard first qubit
H(qs[0]);

// iterate through the bitstring and CNOT to qubits corresponding to true bits
for (i in 1..Length(qs)-1) {

if (bits[i]) {
CNOT(qs[0], qs[i]);

}
}

}
}

}

https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.cnot
https://docs.microsoft.com/en-us/quantum/libraries/control-flow

3

A3. Generate superposition of two basis states

You are given N qubits (1 ≤ N ≤ 8) in zero state |0...0〉. You are also given two bitstrings bits0 and bits1 which
describe two different basis states on N qubits |ψ0〉 and |ψ1〉. Your task is to generate a state which is an equal
superposition of the given basis states:

|S〉 =
1√
2

(
|ψ0〉+ |ψ1〉

)
You have to implement an operation which takes the following inputs:

� an array of qubits qs,

� two arrays of Boolean values bits0 and bits1 representing the basis states |ψ0〉 and |ψ1〉. These arrays will have
the same length as the array of qubits. bits0 and bits1 will differ in at least one position.

The operation doesn’t have an output; its “output” is the state in which it leaves the qubits.

Solution. In the previous task A2 we solved the special case of this task, in which one of the bit vectors was given by
the all-zero bit-vector bit0 = [0, . . . , 0], and the first element of the the other bit vector was equal to 1, which allowed
us to anchor our CNOT sequence by applying a Hadamard gate to the first qubit. In this task, we can leverage the
same idea, however we will first have to find the first position at which the two inputs bit0 and bit1 differ. This is
accomplished using a classical function. Read more about using Q# functions to process classical data and about
functions vs operations.

Once the function FindFirstDiff identified the first index ∆ in which bits0 and bits1 differ, we apply a Hadamard
gate to that location. Now, for each position i 6= ∆ there are 4 options:

� bits0[i] = bits1[i] = 0: do nothing.

� bits0[i] = bits1[i] = 1: flip the state of the qubit i.

� bits0[i] = bits0[∆], bits1[i] = bits1[∆]: apply CNOT with qs[∆] as control and qs[i] as target.

� bits0[i] 6= bits0[∆], bits1[i] 6= bits1[∆]: apply CNOT with qs[∆] as control and qs[i] as target, and then flip the
state of the qubit i.

Flipping bits can be done using the Pauli X gate.

Listing 3. Generate superposition of two basis states

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

function FindFirstDiff (bits0 : Bool[], bits1 : Bool[]) : Int
{

mutable firstDiff = -1;
for (i in 0 .. Length(bits1)-1) {

if (bits1[i] != bits0[i] && firstDiff == -1) {
set firstDiff = i;

}
}
return firstDiff;

}

operation Solve (qs : Qubit[], bits0 : Bool[], bits1 : Bool[]) : ()
{

body
{

// find the index of the first bit at which the bitstrings are different
let firstDiff = FindFirstDiff(bits0, bits1);

https://docs.microsoft.com/en-us/quantum/quantum-techniques-2-operationsandfunctions
https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.x

4

// Hadamard corresponding qubit to create superposition
H(qs[firstDiff]);

// iterate through the bitstrings again setting the final state of qubits
for (i in 0 .. Length(qs)-1) {

if (bits0[i] == bits1[i]) {
// if two bits are the same apply X or nothing
if (bits0[i]) {

X(qs[i]);
}

} else {
// if two bits are different, set their difference using CNOT
if (i > firstDiff) {

CNOT(qs[firstDiff], qs[i]);
if (bits0[i] != bits0[firstDiff]) {

X(qs[i]);
}

}
}

}
}

}
}

A4. Generate W state

You are given N = 2k qubits (0 ≤ k ≤ 4) in zero state |0...0〉. Your task is to create a generalized W state on them.
Generalized W state is an equal superposition of all basis states on N qubits that have Hamming weight equal to 1:

|WN 〉 =
1√
N

(
|100...0〉+ |010...0〉+ ...+ |00...01〉

)
For example, for N = 1, |W1〉 = |1〉. You have to implement an operation which takes an array of N qubits as an
input and has no output. The “output” of the operation is the state in which it leaves the qubits.

Solution. We proceed by induction on k. For k = 0, we just need to apply a Pauli X gate to the input to create
|W1〉 = |1〉. For general k, we first create the state |WN/2〉 on the first 2k−1 = N/2 qubits. This is done by recursively
calling the preparation operation. Now the first N/2 qubits are already in a superposition where only basis states
of Hamming weight 1 occur. Next, we allocate an auxiliary qubit which will serve as a flag whether we are in the
block of the first N/2 qubits or the block of the last N/2 qubits. If the flag is “0”, there is nothing to be done. If the
flag is “1”, we move the state of the first N/2 qubits to the state of the last N/2 qubits and vice versa. This can be
accomplished using a controlled SWAP operation.

This almost creates the state |Wk〉 on N qubits, however, one issue remains: the state is now entangled with the
state of the flag qubit, i.e., we have to reset the state of the flag qubit. If we were to simply measure the flag qubit

in the Pauli Z basis, the overall state vector would collapse to a |WN/2〉 state on one half of the qubits and |0〉⊗N/2
on the other half of the qubits, the order of states depending on whether the measured result was “Zero” or “One”.
Instead, we have to “uncompute” the state of the flag qubit so that it will no longer be entangled with the rest of the
qubits. This can be accomplished by checking whether the Hamming weight of the second N/2 qubits is equal to 1,
which can be done by XORing each of the second N/2 qubits into the flag qubit.

In the Q# code, the auxiliary qubit here is allocated in |0〉 state with a using statement. The controlled SWAP
operation can be implemented using the controlled functor applied to the SWAP operation which itself is a primitive
gate.

Listing 4. Generate W state

namespace Solution {
open Microsoft.Quantum.Primitive;

https://en.wikipedia.org/wiki/W_state
https://docs.microsoft.com/en-us/quantum/quantum-techniques-5-workingwithqubits
 https://docs.microsoft.com/en-us/quantum/quantum-qr-typemodel

5

open Microsoft.Quantum.Canon;

operation Solve (qs : Qubit[]) : ()
{

body
{

let N = Length(qs);
if (N == 1) {

// base of recursion: |1>
X(qs[0]);

} else {
let K = N / 2;
// create W state on the first K qubits
Solve(qs[0..K-1]);

// the next K qubits are in |0...0> state
// allocate ancilla in |+> state
using (anc = Qubit[1]) {

let here = anc[0];
H(here);
for (i in 0..K-1) {

(Controlled SWAP)([here], (qs[i], qs[i+K]));
}
// unentangle here from the rest of the qubits
for (i in K..N-1) {

CNOT(qs[i], here);
}

}
}

}
adjoint auto;

}
}

B1. Distinguish zero state and W state

You are given N qubits (2 ≤ N ≤ 8) which are guaranteed to be in one of the two states:

� |0...0〉 state, or

� |W 〉 = 1√
N

(
|100...0〉+ |010...0〉+ ...+ |00...01〉

)
state.

Your task is to perform necessary operations and measurements to figure out which state it was and to return 0 if it
was |0..0〉 state or 1 if it was the W state. The state of the qubits after the operations does not matter. You have to
implement an operation which takes an array of N qubits as an input and returns an integer.

Solution. Note that the Hamming weight of each basis state in the W state is equal to 1, whereas the Hamming
weight of the |0 . . . 0〉 state is equal to 0. To distinguish the two cases, it is therefore sufficient to measure the given
state vector in the computational basis (aka measure each of the qubits in Pauli Z basis), and to count the number of
“One”s that have been measured. For a background on measurements, please see this article in Q# documentation.
In Q#, the measurement in the Pauli Z basis can be done using the M gate. Computing the Hamming weight can be
done using a mutable counter variable.

Listing 5. Distinguish zero state and W state

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

https://en.wikipedia.org/wiki/Hamming_weight
https://docs.microsoft.com/en-us/quantum/quantum-concepts-4-qubit
https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.m

6

operation Solve (qs : Qubit[]) : Int
{

body
{

// measure all qubits
mutable countOnes = 0;
for (i in 0..Length(qs)-1) {

if (M(qs[i]) == One) {
set countOnes = countOnes + 1;

}
}
// if there is exactly one One, it’s W state, if there are no Ones, it’s |0...0>
if (countOnes == 0) {

return 0;
}
return 1;

}
}

}

You can also use a shortcut: since you know that you’ll get either no “One”s or exactly one “One”, you can infer
that the state was W as soon as you measure a “One”, there’s no need to measure the rest of the qubits in this case.

Listing 6. Distinguish zero state and W state

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (qs : Qubit[]) : Int
{

body
{

// measure all qubits
// if there is at least one One, it’s W state, if there are no Ones, it’s |0...0>
// (and you can return as soon as get the first One)
for (i in 0..Length(qs)-1) {

if (M(qs[i]) == One) {
return 1;

}
}
return 0;

}
}

}

B2. Distinguish GHZ state and W state

You are given N qubits (2 ≤ N ≤ 8) which are guaranteed to be in one of the two states:

� |GHZ〉 = 1√
2

(
|0...0〉+ |1...1〉

)
state, or

� |W 〉 = 1√
N

(
|100...0〉+ |010...0〉+ ...+ |00...01〉

)
state.

Your task is to perform necessary operations and measurements to figure out which state it was and to return 0 if
it was GHZ state or 1 if it was W state. The state of the qubits after the operations does not matter. You have to
implement an operation which takes an array of N qubits as an input and returns an integer.

7

Solution. This is almost identical to the task B1, with the only difference being that the GHZ state is supported
on basis states that are either the all zero or the all one vector, i.e., its Hamming weight upon measurement in the
computational basis is either equal to 0 or to N . Note that as N 6= 1, this perfectly distinguishes this case from the
case of the W states in which the Hamming weight is equal to 1. The only difference in the Q# solution is to catch
the case in which the Hamming weight was N , which again can be implemented using a counter.

Listing 7. Distinguish GHZ state and W state

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (qs : Qubit[]) : Int
{

body
{

// measure all qubits; if there is exactly one One, it’s W state,
// if there are no Ones or all are Ones, it’s GHZ
mutable countOnes = 0;
for (i in 0..Length(qs)-1) {

if (M(qs[i]) == One) {
set countOnes = countOnes + 1;

}
}
if (countOnes == 1) {

return 1;
}
return 0;

}
}

}

B3. Distinguish four 2-qubit states

You are given 2 qubits which are guaranteed to be in one of the four orthogonal states:

� |S0〉 = 1
2

(
|00〉+ |01〉+ |10〉+ |11〉

)
� |S1〉 = 1

2

(
|00〉 − |01〉+ |10〉 − |11〉

)
� |S2〉 = 1

2

(
|00〉+ |01〉 − |10〉 − |11〉

)
� |S3〉 = 1

2

(
|00〉 − |01〉 − |10〉+ |11〉

)
Your task is to perform necessary operations and measurements to figure out which state it was and to return the
index of that state (0 for |S0〉, 1 for |S1〉 etc.). The state of the qubits after the operations does not matter. You have
to implement an operation which takes an array of 2 qubits as an input and returns an integer.

Solution. Observe that the four potential input states, when arranged into the columns of a matrix, correspond
precisely to the Hadamard matrix H⊗2 defined in the solution of A1. To solve the task, we therefore apply the
transformation that takes the given basis back to the computational basis, which can be accomplished by applying
the inverse operation to H⊗2, followed by a measurement in the Pauli Z basis. Note that (H⊗2)−1 = (H⊗2)† = H⊗2

as the Hadamard gate is self-inverse.
In the Q# solution, we use a function ResultAsInt to convert bit-vectors to integers which is part of the “canon”,

a useful set of basic libraries.

Listing 8. Distinguish four 2-qubit states

namespace Solution {
open Microsoft.Quantum.Primitive;

https://docs.microsoft.com/en-us/quantum/libraries/intro

8

open Microsoft.Quantum.Canon;

operation Solve (qs : Qubit[]) : Int
{

body
{

// These states are produced by H x H, applied to four basis states.
// To measure them, apply H x H followed by basis state measurement.
H(qs[0]);
H(qs[1]);
return ResultAsInt([M(qs[1]); M(qs[0])]);

}
}

}

B4. Distinguish four 2-qubit states - 2

You are given 2 qubits which are guaranteed to be in one of the four orthogonal states:

� |S0〉 = 1
2

(
|00〉 − |01〉 − |10〉 − |11〉

)
� |S1〉 = 1

2

(
− |00〉+ |01〉 − |10〉 − |11〉

)
� |S2〉 = 1

2

(
− |00〉 − |01〉+ |10〉 − |11〉

)
� |S3〉 = 1

2

(
− |00〉 − |01〉 − |10〉+ |11〉

)
Your task is to perform necessary operations and measurements to figure out which state it was and to return the
index of that state (0 for |S0〉, 1 for |S1〉 etc.). The state of the qubits after the operations does not matter. You have
to implement an operation which takes an array of 2 qubits as an input and returns an integer.

Solution. We first note that the states |S0〉 , . . . , |S3〉 are mutually orthogonal. Therefore, in principle, the four cases
can be perfectly distinguished by applying the operation A†, where A is the matrix obtained by arranging the vectors
column-wise: A = |S0〉 , . . . , |S3〉.

In general, applying a unitary operation requires to first decompose it into a sequence of primitive gates (or library
operations), which depending on the operation can be difficult. In this case, we can solve the problem by reducing
A to the Hadamard matrix H⊗2: we note that A is equal to H⊗2 up to permutations matrices and diagonal +1/-1
matrices that are applied to the left and the right of A. Specifically,

A = diag(−1, 1, 1, 1) (H ⊗H) diag(−1, 1, 1, 1) π, (1)

where π is the permutation (1, 2) (on basis states |0〉 , |1〉 , |2〉 , |3〉) which corresponds to a swap of two qubits.
In Q#, we can implement the swap operation by a simple SWAP gate. The digaonal gate diag(−1, 1, 1, 1) can be

obtained from a controlled-Z gate diag(1, 1, 1, -1) by conjugating with Pauli X operations on both qubits. This is
done by the operation ApplyDiag. Finally, note that we use partial application in the ApplyToEach(H,) operation
to apply the same operation (here H) to several qubits. Also, we use the With(U,V) combinator which implements a
conjugation U†V U of two operations.

Finally, a note mathematical conventions which can lead to confusion when translating mathematical descriptions
of operators in to programmatic sequences of gates: in general, when implementing factorizations such as eq. (1), the
order of the binding reverses: as the factors π, diag(−1, 1, 1, 1), etc. in eq. (1) act by left-multiplications on (column)
vectors and are therefore read from right to left, in Q# the instructions are applied in the reversed order, i.e., first π
is applied, then diag(−1, 1, 1, 1), etc.

Listing 9. Distinguish four 2-qubit states - 2

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.swap

9

// Helper function to implement diag(-1, 1, 1, 1)
operation ApplyDiag (qs : Qubit[]) : ()
{

body
{

ApplyToEach(X, qs);
(Controlled Z)([qs[0]], qs[1]);
ApplyToEach(X, qs);

}
adjoint self

}

operation Solve (qs : Qubit[]) : Int
{

body
{

SWAP(qs[0], qs[1]); // pi
With(ApplyDiag, ApplyToEach(H, _), qs); // diag(..) (H \otimes H) diag(..)
return ResultAsInt([M(qs[1]); M(qs[0])]);

}
}

}

C1. Distinguish zero state and plus state with minimum error

You are given a qubit which is guaranteed to be either in |0〉 state or in |+〉 = 1√
2
(|0〉+ |1〉) state.

Your task is to perform necessary operations and measurements to figure out which state it was and to return 0 if
it was a |0〉 state or 1 if it was |+〉 state. The state of the qubit after the operations does not matter.

Note that these states are not orthogonal, and thus can not be distinguished perfectly. In each test your solution
will be called 1000 times, and your goal is to get a correct answer at least 80% of the times. In each test |0〉 and |+〉
states will be provided with 50% probability.

You have to implement an operation which takes a qubit as an input and returns an integer.

Solution. The states |0〉 and |+〉 = 1√
2
(|0〉+ |1〉) have an inner product of 〈0|+〉 = 1√

2
which corresponds to an angle

of π/4 (or 45◦ in degrees). This is shown in Figure 1 on the left.

Figure 1. Shown on the left are the non-orthogonal states |0〉 and |+〉 that are at an angle π/4. The optimal single-shot
measurement is shown as the dashed vectors on the right. It is obtained by rotating the given state around the y-axis by Ry(α),
where α = π/8, followed by a measurement in the computational basis.

The task is to devise a measurement that upon execution maximizes the probability to answer the correct state.
This is shown in Figure 1 on the right. Let {Ea, Eb} be a measurement with two outcomes a and b, which we identify

10

with the answers, i.e., “a = state was |0〉” and “b = state was |+〉”. Then we define

P (a|0) = probability to observe first outcome given that the state was |0〉 ,

P (b|0) = probability to observe second outcome given that the state was |0〉 ,

P (a|+) = probability to observe first outcome given that the state was |+〉 ,

P (b|+) = probability to observe second outcome given that the state was |+〉 .

The task is to maximize the probability to be correct on a single shot experiment (which is the same as to minimize the
probability to be wrong on a single shot). Assuming uniform prior specified in the statement, i.e., P (+) = P (0) = 1/2,
we get

Pcorrect = P (0)P (a|0) + P (+)P (b|+).

Assuming a von Neumann measurement of the form Ea = Ry(2α)(1, 0)T = (cos(α), sin(α))T and Eb = Ry(2α)(0, 1)T =
(sin(α),− cos(α))T , we get that Pcorrect = 1/2+cos2(α)+cos(α) sin(α). Maximizing this for α, we get maxPsuccess =

1/2(1+1/
√

(2)) = 0.8535.., which is attained for α = π/8. The definition of the Ry gate shows that Ry(θ) = e−iθσy/2

which corresponds to the rotation matrix (
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
.

This means that in the Q# code, rotating the input state by π/8 means to apply Ry with angle 2π/8 = π/4.

Listing 10. Distinguish zero state and plus state with minimum error

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Extensions.Convert;
open Microsoft.Quantum.Extensions.Math;

operation Solve (q : Qubit) : Int
{

body
{

// Rotate the input state by Pi/8 means to apply Ry with angle 2*Pi/8.
Ry(0.25*PI(), q);
if (M(q) == Zero) {

return 0;
}
return 1;

}
}

}

C2. Distinguish zero state and plus state without errors

You are given a qubit which is guaranteed to be either in |0〉 state or in |+〉 = 1√
2
(|0〉+ |1〉) state.

Your task is to perform necessary operations and measurements to figure out which state it was and to return 0 if
it was a |0〉 state, 1 if it was |+〉 state or -1 if you can not decide, i.e., an “inconclusive” result. The state of the qubit
after the operations does not matter.

Note that these states are not orthogonal, and thus can not be distinguished perfectly. In each test your solution
will be called 10000 times, and your goals are:

https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.ry?view=qsharp-preview

11

� never give 0 or 1 answer incorrectly (i.e., never return 0 if input state was |+〉 and never return 1 if input state
was |0〉),

� give -1 answer at most 80% of the times,

� correctly identify |0〉 state at least 10% of the times,

� correctly identify |+〉 state at least 10% of the times.

In each test |0〉 and |+〉 states will be provided with 50% probability.
You have to implement an operation which takes a qubit as an input and returns an integer.

Solution. A simple strategy that gives an inconclusive result with probability 0.75 and never errs in case it yields a
conclusive result can be obtained from randomizing the choice of measurement basis between the computational basis
(std) and the Hadamard basis (had). Observe that when measured in the standard basis, the state |0〉 will always
lead to the outcome “0”, whereas the state |+〉 will lead to outcomes “0” and “1” with probability 1/2. This means
that upon measuring “1” we can with certainty conclude that the state was |+〉. We respond inconclusive “-1” if we
measured “0”. A similar argument applies to the scenario where we measure in the Hadamard basis, where |0〉 can
lead to both outcomes, whereas |+〉 always leads to “0”. Then upon measuring “1” we can with certainty conclude
that the state was |0〉. In this case again, we respond inconclusive “-1” if we measured “0”. This leads to the following
scenarios (shown are the conditional probabilities of the above scenarios and resulting answers):

state basis P(output “0”| state, basis) P(output “1”| state, basis) P(output “−1”| state, basis)

|0〉 std 0 0 1

|+〉 std 0 1/2 1/2

|0〉 had 1/2 0 1/2

|+〉 had 0 0 1

As the priors for choosing the state and the basis are both uniform, the probability for an inconclusive result is given
by P(output “−1”| state, basis) · P(state, basis) = 1 · 1/4 + 1/2 · 1/4 + 1/2 · 1/4 + 1 · 1/4 = 3/4, and the probabilities
for outputting the other two cases are 1/8 each. This means we can implement the simple strategy in Q# by first
performing a coin toss to determine whether we are measuring in std/had and then dispatching the various cases
using if/else statements.

It should be noted that the presented strategy is not the best possible. Indeed, there is a quantum strategy which
yields an inconclusive result with probability 1/

√
(2) = 0.7071... which is better than the above strategy.

Listing 11. Distinguish zero state and plus state without errors

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Extensions.Convert;
open Microsoft.Quantum.Extensions.Math;

operation Solve (q : Qubit) : Int
{

body
{

mutable output = 0;
let basis = RandomInt(2);
// randomize over std and had

if (basis == 0) {
// use standard basis
let result = M(q);
if (result == One) {

// this can only arise if the state was |+>
set output = 1;

}
else {

12

set output = -1;
}

}
else {

// use Hadamard basis
H(q);
let result = M(q);
if (result == One) {

// this can only arise if the state was |0>
set output = 0;

}
else {

set output = -1;
}

}
return output;

}
}

}

D1. Oracle for f(x) = b · x mod 2

Implement a quantum oracle on N qubits which implements the following function: f(x) = b · x mod 2 =∑N−1
k=0 bkxk mod 2, where b ∈ {0, 1}N (a vector of N integers, each of which can be 0 or 1). For an explanation on

how this type of quantum oracles works, see Introduction to quantum oracles. You have to implement an operation
which takes the following inputs:

� an array of N qubits x in arbitrary state (input register), 1 ≤ N ≤ 8,

� a qubit y in arbitrary state (output qubit),

� an array of N integers b, representing the vector b. Each element of b will be 0 or 1.

The operation doesn’t have an output; its “output” is the state in which it leaves the qubits.

Solution. Recall that the CNOT gate between qubit xi of the x-register as control and qubit y as target corresponds
to the operation that maps |xi〉|y〉 7→ |xi〉|y ⊕ xi〉 for any value of xi that corresponds to a computational basis
vector. Therefore if we apply a CNOT gate between xi and y if and only if bi = 1, we’ll get a transformation
|xi〉|y〉 7→ |xi〉|y ⊕ bixi〉. Applying this logic for all indices i = 0, ..., N − 1 gives the desired result.

Listing 12. Oracle for f(x) = b · x mod 2

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (x : Qubit[], y : Qubit, b : Int[]) : ()
{

body
{

for (i in 0..Length(x)-1) {
if (b[i] == 1) {

CNOT(x[i], y);
}

}
}

}
}

https://codeforces.com/blog/entry/60319

13

D2. Oracle for f(x) = b · x+ (1− b) · (1− x) mod 2

Implement a quantum oracle on N qubits which implements the following function:

f(x) = (b · x + (1− b) · (1− x)) mod 2 = =

N−1∑
k=0

(bkxk + (1− bk) · (1− xk)) mod 2

Here b ∈ {0, 1}N (a vector of N integers, each of which can be 0 or 1), and 1 is a vector of N 1s. For an explanation
on how this type of quantum oracles works, see Introduction to quantum oracles. You have to implement an operation
which takes the following inputs:

� an array of N qubits x in arbitrary state (input register), 1 ≤ N ≤ 8,

� a qubit y in arbitrary state (output qubit),

� an array of N integers b, representing the vector b. Each element of b will be 0 or 1.

The operation doesn’t have an output; its “output” is the state in which it leaves the qubits.

Solution. Note that the binary complement x of a Boolean variable x is obtained by x = 1− x if we cast the Boolean
variable as “false”= 0 and “true”= 1. We therefore can compute the function f(x) = b · x+ (1− b) · (1− x) mod 2
by first computing the function b · x as in task D1 for the values of b that are equal to “1”, which is then followed
by computing the binary complement of variable xi and copying this into y for the values of b that are equal to “0”.
The binary complement of a variable is computed using Pauli X which implements the bit-flip; note that we have
to “uncompute” the bit-flip operation as the oracle is required to implement |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉, i.e., it needs to
leave the input state |x〉 unchanged.

Listing 13. Oracle for f(x) = b · x+ (1− b) · (1− x) mod 2

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (x : Qubit[], y : Qubit, b : Int[]) : ()
{

body
{

for (i in 0..Length(x)-1) {
if (b[i] == 1) {

CNOT(x[i], y);
} else {

// do a 0-controlled NOT
X(x[i]);
CNOT(x[i], y);
X(x[i]);

}
}

}
}

}

D3. Oracle for majority function

Implement a quantum oracle on 3 qubits which implements a majority function. Majority function on 3-bit vectors
is defined as follows: f(x) = 1 if vector x has two or three 1s, and 0 if it has zero or one 1s. For an explanation on
how this type of quantum oracles works, see Introduction to quantum oracles. You have to implement an operation
which takes the following inputs:

� an array of 3 qubits x in arbitrary state (input register),

https://codeforces.com/blog/entry/60319
https://codeforces.com/blog/entry/60319

14

� a qubit y in arbitrary state (output qubit).

The operation doesn’t have an output; its “output” is the state in which it leaves the qubits.

Solution. Boolean function f(x0, x1, x2) = MAJ(x0, x1, x2) can be written as f(x0, x1, x2) = (x0 ∧ x1)⊕ (x0 ∧ x2)⊕
(x1 ∧x2): if two of the inputs equal 1, exactly one term equals 1, and if all three inputs equal 1, all terms equal 1 and
their XOR equals 1 as well.

The AND function can be implemented using a so-called Toffoli gate (aka CCNOT gate) which maps |x, y, z〉 7→
|x, y, z ⊕ xy〉. Therefore, we can implement the function as shown in the Q# listing below. Note that there are better
ways for implementing the majority function that require only 1 Toffoli gate and several CNOT gates.

Listing 14. Oracle for majority function

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (x : Qubit[], y : Qubit) : ()
{

body
{

CCNOT(x[0], x[1], y);
CCNOT(x[0], x[2], y);
CCNOT(x[1], x[2], y);

}
}

}

E1. Bernstein-Vazirani algorithm

You are given a quantum oracle - an operation on N + 1 qubits which implements a function f : {0, 1}N → {0, 1}.
You are guaranteed that the function f implemented by the oracle is scalar product function (oracle from problem
D1):

f(x) = b · x mod 2 =

N−1∑
k=0

bkxk mod 2

Here b ∈ {0, 1}N (an array of N integers, each of which can be 0 or 1). Your task is to reconstruct the array b. Your
code is allowed to call the given oracle only once. You have to implement an operation which takes the following
inputs:

� an integer N - the number of qubits in the oracle input (1 ≤ N ≤ 8),

� an oracle Uf , implemented as an operation with signature ((Qubit[], Qubit) => ()), i.e., an operation which
takes as input an array of qubits and an output qubit and has no output.

The return of your operation is an array of integers of length N , each of them 0 or 1.

Solution. The Bernstein-Vazirani is a well-known quantum algorithm, first described in this paper. For a Q# imple-
mentation, see the example ParityViaFourierSampling at Microsoft/Quantum GitHub repository.

The algorithm is based on the following sequence of steps: (1) first, create a register of N qubits in the uniform state.

This can be accomplished by applying H⊗N |0〉⊗N . Next, (2) create a qubit in state |−〉. This can be accomplished
by applying H to a qubit in state |−〉. Next, (3) compute the oracle corresponding to the input function Uf into the
N qubit register x and the target register which holds the |−〉 state. This is sometimes called “phase-kickback” in
the quantum computing literature. The overall effect of this is to compute the map |x〉 |−〉 7→ (−1)Uf(x) |x〉 |−〉, i.e.,
the oracle Uf is computed into the phase. The qubit |−〉 factors off and can henceforth be ignored. Next, observe
that the column vectors

∑
x(−1)Uf(x) |x〉 corresponding to the various functions f(x) = b · x for all N -bit vectors

b are mutually orthogonal and correspond precisely to the columns of the Hadamard transform H⊗N . Hence, by
(4) applying the inverse to that operation (which again is equal to H⊗N), the state is mapped to the basis vector
|b0, . . . , bN−1〉. Upon measuring this vector in the standard basis, we obtain the desired result.

https://docs.microsoft.com/en-us/qsharp/api/prelude/microsoft.quantum.primitive.ccnot
https://dl.acm.org/citation.cfm?doid=167088.167097
https://github.com/Microsoft/Quantum/blob/master/Samples/SimpleAlgorithms/SimpleAlgorithms.qs

15

Listing 15. Bernstein-Vazirani algorithm

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (N : Int, Uf : ((Qubit[], Qubit) => ())) : Int[]
{

body
{

mutable r = new Int[N];

// allocate N+1 qubits
using (qs = Qubit[N+1]) {

// split allocated qubits into input register and answer register
let x = qs[0..N-1];
let y = qs[N];

// prepare qubits in the right state
ApplyToEach(H, x);
X(y);
H(y);

// apply oracle
Uf(x, y);

// apply Hadamard to each qubit of the input register
ApplyToEach(H, x);

// measure all qubits of the input register;
// the result of each measurement is converted to a Bool
for (i in 0..N-1) {

if (M(x[i]) != Zero) {
set r[i] = 1;

}
}

// before releasing the qubits make sure they are all in |0> state
ResetAll(qs);

}
return r;

}
}

}

E2. Another array reconstruction algorithm

You are given a quantum oracle - an operation on N + 1 qubits which implements a function f : {0, 1}N → {0, 1}.
You are guaranteed that the function f implemented by the oracle can be represented in the following form (oracle
from problem D2):

f(x) = (b · x + (1− b) · (1− x)) mod 2 = =

N−1∑
k=0

(bkxk + (1− bk) · (1− xk)) mod 2

Here b ∈ {0, 1}N (a vector of N integers, each of which can be 0 or 1), and 1 is a vector of N 1s. Your task is to
reconstruct the array b which could produce the given oracle. Your code is allowed to call the given oracle only once.
You have to implement an operation which takes the following inputs:

16

� an integer N - the number of qubits in the oracle input (1 ≤ N ≤ 8),

� an oracle Uf , implemented as an operation with signature ((Qubit[], Qubit) => ()), i.e., an operation which
takes as input an array of qubits and an output qubit and has no output.

The return of your operation is an array of integers of length N , each of them 0 or 1. Note that in this problem we’re
comparing the oracle generated by your return to the oracle Uf , instead of comparing your return to the (hidden)
value of b used to generate Uf . This means that any kind of incorrect return results in “Runtime Error” verdict, as
well as actual runtime errors like releasing qubits in non-zero state.

Solution. Note that the function f(x) defined in the task can be simplified as f(x) = b · x + (1 − b) · (1 − x)
mod 2 =

∑
i bi ⊕

∑
i xi if the number of bits N is even and to

∑
i bi ⊕

∑
i xi ⊕ 1 if the number of bits N is odd.

Further note that half of all 2N bit-strings are valid answers for r (the ones that have the same parity as r). To
determine which half contains the vector r, we only have to apply the oracle to an input of all zeroes, and measure
the qubit y to figure out the parity of vector r.

Listing 16. Another array reconstruction algorithm

namespace Solution {
open Microsoft.Quantum.Primitive;
open Microsoft.Quantum.Canon;

operation Solve (N : Int, Uf : ((Qubit[], Qubit) => ())) : Int[]
{

body
{

mutable r = new Int[N];

// allocate N+1 qubits
using (qs = Qubit[N+1]) {

// split allocated qubits into input register and answer register
let x = qs[0..N-1];
let y = qs[N];

// apply oracle to qubits in all 0 state
Uf(x, y);

// remove the N from the expression
if (N % 2 == 1) {

X(y);
}

// now y = sum of r

// measure the output register
let m = M(y);
if (m == One) {

// adjust parity of bit vector r
set r[0] = 1;

}

// before releasing the qubits make sure they are all in |0> state
ResetAll(qs);

}
return r;

}
}

}

	Microsoft Q# Coding Contest - Summer 2018 July 6 - 9, 2018
	Tasks and Solutions
	A1. Generate superposition of all basis states
	A2. Generate superposition of zero state and a basis state
	A3. Generate superposition of two basis states
	A4. Generate W state
	B1. Distinguish zero state and W state
	B2. Distinguish GHZ state and W state
	B3. Distinguish four 2-qubit states
	B4. Distinguish four 2-qubit states - 2
	C1. Distinguish zero state and plus state with minimum error
	C2. Distinguish zero state and plus state without errors
	D1. Oracle for f(x) = b x 12mumod2
	D2. Oracle for f(x) = b x + (1 - b) (1 - x) 12mumod2
	D3. Oracle for majority function
	E1. Bernstein-Vazirani algorithm
	E2. Another array reconstruction algorithm

